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Abstract—Numerical technique is employed to derive a solution to the transient natural convection flow of an incompressible viscous
fluid past an impulsively started semi-infinite isothermal vertical plate. Heat transfer effects are taken into account and the governing
equations are solved using implicit finite-difference method. Transient and steady-state velocity and temperature profiles, the local
as well as average skin friction and the Nusselt number are shown graphically. The velocity and temperature profiles at small values
of time t are shown to agree with the exact solution of the flow past an impulsively started infinite vertical isothermal plate. The heat
transfer effects of different parameters Pr (the Prandtl number) and Gr (the Grashof number) are discussed. It is observed that the
number of time steps for convergence to steady state depends strongly on Gr.  2001 Éditions scientifiques et médicales Elsevier
SAS
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Nomenclature

Gr Grashof number
g acceleration due to gravity . . . . . . . . m·s−2

L reference length . . . . . . . . . . . . . m
NuX dimensionless local Nusselt number
Nu dimensionless average Nusselt number
Pr Prandtl number
T ′ temperature of the fluid . . . . . . . . . K
T dimensionless temperature
t ′ time . . . . . . . . . . . . . . . . . . . . s
t dimensionless time
u velocity of the fluid in the upward

direction . . . . . . . . . . . . . . . . . m·s−1

u0 velocity of the plate . . . . . . . . . . . m·s−1

U dimensionless velocity of the fluid in the
upward direction

v velocity of the fluid normal to the plate m·s−1

V dimensionless velocity of the fluid normal
to the plate

* Correspondence and reprints.
E-mail addresses: scumary@hotmail.com (R. Muthucumaraswa-

my), ganesan@annauniv.edu (P. Ganesan).

x coordinate axis along the plate in the
vertical direction . . . . . . . . . . . . . m

X dimensionless coordinate axis along the
plate in the vertical direction

y coordinate axis normal to the plate . . . m
Y dimensionless coordinate axis normal to

the plate

Greek symbols

α thermal diffusivity . . . . . . . . . . . . W·m−2·K−1

β coefficient of volume expansion . . . . . K−1

µ coefficient of viscosity . . . . . . . . . . Ra·s
ν kinematic viscosity . . . . . . . . . . . . m2·s−1

τX dimensionless local skin friction
τ dimensionless average skin friction

Subscripts

w conditions at the wall
∞ conditions in the free stream
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1. INTRODUCTION

In many manufacturing processes such as hot rolling,
hot extrusion, wire drawing, crystal growing, continuous
casting and fibre drawing, heat transfer occurs between a
moving material and the ambient medium. In most of the
cases, the moving material is hotter than the surroundings
and the heat transfer to the ambient occurs at the surface
of the moving material. In the case of wire drawing and
continuous casting processes, the material is cooled by
passing it through a colder ambient medium like water
or, in some cases, just quiescent ambient air. In the
design of nuclear reactor fuel elements it is necessary
to consider their temperature behaviour during various
types of power transients. Under some conditions, for
example, during a coolant pump failure, the heat removal
to the cooling fluid may be solely by free convection.
To obtain some insight into the convective process it is
necessary to consider how the free-convection boundary
layer is influenced when the heated surface is undergoing
a thermal transient.

Stokes [1] first presented an exact solution to the
Navier–Stokes equation which is for the flow of a viscous
incompressible fluid past an impulsively started infinite
horizontal plate in its own plane. Such a flow past an im-
pulsively started semi-infinite horizontal plate was first
presented by Stewartson [2]. However, such an analy-
sis has not been carried out in case of the flow past
an impulsively started semi-infinite isothermal vertical
plate. Following Stokes [1] analysis, Soundalgekar [3]
was the first to present an exact solution to the flow of
a viscous fluid past an impulsively started infinite verti-
cal plate in its own plane. The solution was derived by
the usual Laplace-transform technique and the effects of
heating or cooling of the plate on the flow-field were
discussed through Grashof number. Soundalgekar and
Patil [4, 5] have studied Stoke’s problem for infinite ver-
tical plate with uniform heat flux and variable tempera-
ture. Soundalgekar [6] analysed the mass transfer effects
on the flow past an impulsively started infinite isothermal
vertical plate. Again, Soundalgekar et al. [7] have consid-
ered the flow past an impulsively started infinite vertical
plate with uniform heat flux and mass transfer. Das et
al. [8] have studied the flow past an impulsively started
infinite isothermal vertical plate with constant mass flux.
In all above studies [4–8], the dimensionless governing
equations are solved by using Laplace-transform tech-
nique.

Hall [9] solved the flow past an impulsively started
semi-infinite horizontal plate using numerical technique.
He employed a finite-difference method of a mixed

explicit–implicit type, which is free from any restrictions
on the mesh-size and, hence, it is a convergent and stable
finite-difference technique. Velocity profiles were com-
puted for different values of the nondimensional time T .
Also the variation of the surface shear with respect to
time T was shown graphically. Muthukumaraswamy and
Ganesan [10] obtained the finite-difference solution of
the flow past an impulsively started semi-infinite verti-
cal plate with heat and mass transfer. Here the plate tem-
perature and the concentration level near the plate are
considered to be uniform. Again, Muthukumaraswamy
and Ganesan [11] have analysed the mass transfer effects
on flow past an impulsively started vertical plate with
variable surface temperature and mass flux using finite-
difference technique. Pure heat transfer effects were not
taken into consideration in [10, 11].

However, the heat transfer effects alone play an im-
portant role in some industrial applications like food
processing, steel and ceramic industries. An example is
the study of cracking behaviour in ceramic industries.
Cracking due to improper drying is a major loss to the
ceramic industry. The removal of moisture in ceramic
product is very important. The temperature isotherms for
various shapes, sizes and materials for various rates of
temperature rise in furnaces. This will help in under-
standing the cracking behaviour. Hence, we have studied
the flow past an impulsively started semi-infinite isother-
mal vertical plate using implicit finite-difference scheme
of Crank–Nicolson type. The transient and steady-state
velocity and temperature profiles are shown graphically.
The effect of local as well as average skin friction and
Nusselt number are studied. As a check, we have com-
puted the numerical values of the velocity and tempera-
ture profiles from the exact solution derived by Soundal-
gekar [3] for t = 0.2, Gr = 5,10 and Pr = 0.71 and also
from the present analysis, and these are found to agree in
an excellent way.

2. MATHEMATICAL ANALYSIS

Consider a semi-infinite vertical plate held stationary
in an infinite mass of viscous incompressible fluid, both
being maintained at constant temperature T ′∞ initially.
The physical model of the problem is given in figure 1.
Here the x-axis is taken along the plate in the vertically
upward direction and the y-axis is chosen normal to the
plate. At time t ′ > 0, the plate is given an impulsive
motion in the vertical direction in its own plane so that
it starts moving with a constant velocity u0 and the
plate temperature is raised to T ′

w causing the existence of
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Figure 1. Physical model of the problem.

temperature difference near the plate. This in turn creates
buoyancy forces, and hence, we can assume Boussinesq’s
approximation. Then under these physical conditions,
the laminar flow can be shown to be governed by the
following system of equations:

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂u

∂t ′
+ u

∂u

∂x
+ v

∂u

∂y
= gβ

(
T ′ − T ′∞

) + ν
∂2u

∂y2 (2)

∂T ′

∂t ′
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= α

∂2T ′

∂y2 (3)

with the following initial and boundary conditions:

t ′ ≤ 0: u = 0, v = 0, T ′ = T ′∞

t ′ > 0:

u = u0, v = 0, T ′ = T ′
w at y = 0

u = 0, T ′ = T ′∞ at x = 0

u → 0, T ′ → T ′∞ as y → ∞

(4)

We now introduce the following nondimensional quan-
tities:

X = xu0

ν
, Y = yu0

ν
, U = u

u0

V = v

u0
, t = t ′u2

0

ν
(5)

Gr = νgβ(T ′
w − T ′∞)

u3
0

T = T ′ − T ′∞
T ′

w − T ′∞
, Pr = ν

α

in equations (1)–(4) which leads to

∂U

∂X
+ ∂V

∂Y
= 0 (6)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= Gr T + ∂2U

∂Y 2
(7)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
= 1

Pr

∂2T

∂Y 2 (8)

and the initial and boundary conditions are

t ≤ 0: U = 0, V = 0, T = 0

t > 0:

U = 1, V = 0, T = 1 at Y = 0

U = 0, T = 0 at X = 0

U → 0, T → 0 as Y → ∞

(9)

An implicit finite-difference scheme of Crank–Nicol-
son type has been employed to solve the nonlinear cou-
pled equations (6)–(8) with the conditions (9). The di-
mensionless governing equations are reduced to tridiag-
onal system of equations. Such a system of equations is
solved by using Thomas algorithm as described in Car-
nahan et al. [12]. The region of integration is considered
as a rectangle with sides Xmax(= 1) and Ymax(= 14),
where Ymax corresponds to Y = ∞, which lies very well
outside the momentum, energy and concentration bound-
ary layers. The maximum of Y was chosen as 14 af-
ter some preliminary investigations so that the last two
of the boundary conditions (11) are satisfied within the
tolerance limit 10−5. We take the mesh sizes in the X

and Y directions, during computation, as �X = 0.05 and
�Y = 0.25 and the time step level at �t = 0.01. The
stabilty of the finite-difference scheme and numerical
technique used in this problem is discussed in Muthuku-
maraswamy and Ganesan [10].

3. DISCUSSION OF RESULTS

Representative numerical results for the uniform wall
temperature will be discussed in this section. In order to
ascertain the accuracy of our numerical results we have
compared our present results with the exact solutions
of those of Soundalgekar [3] for both the velocity and
the temperature for Gr = 5,10, t = 0.2, Pr = 0.71 (here
η = Y/

√
2t) and these are shown in figures 2 and 3. The

velocity profiles are shown in figure 2 and we observe that
the agreement with the exact solution of U is excellent.
Likewise in figure 3 for the temperature profiles given
by T = erfc(η

√
Pr) (Soundalgekar [3]) we find that the

agreement is also excellent.
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Figure 2. Comparison of velocity profiles.

Figure 3. Comparison of temperature profiles.

The transient and steady-state velocity profiles for
different thermal Grashof number and Prandtl number
(Pr = 0.71 (air), 7.0 (water)) are shown in figure 4. In
the initial stage, at small values of time t , the transient
velocity of air is observed to increase rapidly, attaining
maximum value at t = 0.2 at small values of the Grashof
number as compared to large values of the Grashof num-
ber. Hence, we conclude that the maximum value of the
transient velocity at small values of time t decreases as
the Grashof number increases. Then as time t increases,
the maximum value of the transient velocity is found to
decrease. The velocity boundary layer is seen to grow
in the direction of motion of the plate. It is observed
that near the leading edge of a semi-infinite vertical plate
moving in a fluid, where in the boundary layer develops
along the direction of the plate. However, the time re-
quired for the velocity to reach the steady state depends
upon both the Prandtl number and the Grashof number.

Figure 4. Transient velocity profiles at X = 1.0 (∗, steady state).

Figure 5. Transient temperature profiles at X = 1.0 (∗, steady
state).

For Pr < 1, the time required for the velocity to reach its
steady state decreases as the Grashof number increases
but for Pr > 1, it is just the opposite, namely, the time
required to reach its steady state increases as the Grashof
number Gr increases. Moreover, the steady-state velocity
increases as the Grashof number Gr increases for Pr > 1,
but the steady-state velocity decreases with increasing the
Grashof number for Pr < 1. In general, the transient or
the steady-state velocity for Pr > 1 is always less than
that for Pr < 1.

The transient and steady-state temperature profiles are
shown in figure 5 which are quite interesting. At small
values of time t the transient temperature is not affected
by the variation in Grashof number for both Pr ≷ 1.
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No buoyancy effect is seen at the begining because
the fluid is not hot enough to introduce significant
buoyancy force. As time elapses, thermal buoyancy
effects are seen easily. It is interesting to note that the
temperature maxima do not occur at steady state but
during the transient process. It is known that Prandtl
number plays an important role in flow phenomena
because it is a measure of the relative magnitude of
viscous fluid boundary layer thickness to the thermal
boundary layer thickness. It is observed that the thermal
boundary layer is found to be thicker in air than in
water, as seen in figure 5 and as expected for the lower
Prandtl number. This shows that the buoyancy effect on
the temperature distribution is very significant in air.
However, the behaviour of the transient temperature to
reach its steady state is similar to that of the transient
velocity.

Knowing the velocity and the temperature field, it
is customary to study the skin friction and the rate
of heat transfer both in their transient and steady-state
conditions. The local as well as average skin friction and
Nusselt number are given by

τX = −
(

∂U

∂Y

)
Y=0

(10)

τ = −
∫ 1

0

(
∂U

∂Y

)
Y=0

dX (11)

NuX = −X

(
∂T

∂Y

)
Y=0

(12)

Nu = −
∫ 1

0

(
∂T

∂Y

)
Y=0

dX (13)

The derivatives involved in equations (10)–(13) are
evaluated by using a five-point approximation formula
and then the integrals are evaluated by using Newton–
Cotes closed integration formula.

The local skin friction values were evaluated from
equation (10) and plotted in figure 6 as a function
of the axial coordiate X. The local wall shear stress
decreases as X increases. It is observed that the local skin
friction increases with increasing the Prandtl number but
decreases with increasing the Grashof number Gr. The
value of the skin friction becomes negative which shows
that after some time there occurs a reverse type of flow
near the moving plate. Physically this is also true as the
motion of the fluid is due to plate moving in the vertical
direction against the gravitational field.

The average skin friction is shown in figure 7 and the
influence of the Prandtl and the Grashof number is the
same as in case of the local skin friction. It decreases

Figure 6. Local skin friction.

Figure 7. Average skin friction.

with an increase in time for small values of t but in case
of water (Pr = 7.0), at large values of time t , the average
skin friction is almost unaffected by time for all values
of the Grashof number. However, for Pr < 1, the average
skin friction is found to be affected only at very small
values of time t when the Grashof number is high.

The local and the average Nusselt number are shown
in figures 8 and 9, respectively. We observe from figure 8
that the local Nusselt number increases with increasing
the Prandtl number and the Grashof number. The average
Nusselt number for different thermal Grashof number
is shown in figure 9. The rate of heat transfer for air
is found to decrease with increasing time t at small
values of time t , but at large time t > 0.5, it is not
significantly affected by time. However, an increase in
the Grashof number leads to an increase in the rate of heat
transfer.
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Figure 8. Local Nusselt number.

Figure 9. Average Nusselt number.

4. CONCLUSIONS

1. When the Grashof number increases less time is
required to reach the steady state velocity or temperature
value when Pr < 1 as compared to that for Pr > 1.

2. The transient or the steady-state velocity for Pr > 1
is always less than that for Pr < 1.

3. At small values of time t , the transient temperature
is not affected due to variation in the value of the Grashof
number, for both Pr ≷ 1.

4. The local or the average skin friction increases
with increasing the Prandtl number but decreases with
increasing the Grashof number.

5. The local skin friction decreases with an increase
in time at small values of time t . But for water, Pr = 7.0,
the average skin friction is almost unaffected by time

for all values of the Grashof number. However, for
Pr < 1, and at high values of the Grashof number, the
average skin friction is affected only at small values of
time t .

6. The local Nusselt number increases with increasing
both the Prandtl and the Grashof number.

7. The average Nusselt number increases with in-
creasing the Grashof number.
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